@article {63, title = {Rods coiling about a rigid constraint: Helices and perversions}, journal = {Proceedings of the Royal Society A}, volume = {477}, year = {2021}, pages = {20200817}, abstract = {

Mechanical instabilities can be exploited to design innovative structures, able to change their shape in the presence of external stimuli. In this work, we derive a mathematical model of an elastic beam subjected to an axial force and constrained to smoothly slide along a rigid support, where the distance between the rod midline and the constraint is fixed and finite. Using both theoretical and computational techniques, we characterize the bifurcations of such a mechanical system, in which the axial force and the natural curvature of the beam are used as control parameters. We show that, in the presence of a straight support, the rod can deform into shapes exhibiting helices and perversions, namely transition zones connecting together two helices with opposite chirality. The mathematical predictions of the proposed model are also compared with some experiments, showing a good quantitative agreement. In particular, we find that the buckled configurations may exhibit multiple perversions and we propose a possible explanation for this phenomenon based on the energy landscape of the mechanical system.

}, keywords = {bifurcation theory, elastic rods, finite-element simulations, helices, perversions, weakly nonlinear analysis}, doi = {/10.1098/rspa.2020.0817}, author = {Davide Riccobelli and Giovanni Noselli and Antonio DeSimone} } @article {38, title = {A robotic crawler exploiting directional frictional interactions: Experiments, numerics and derivation of a reduced model}, journal = {Proceedings of the Royal Society A}, volume = {470}, year = {2014}, pages = {20140333}, abstract = {

We present experimental and numerical results for a model crawler which is able to extract net positional changes from reciprocal shape changes, i.e. {\textquoteleft}breathing-like{\textquoteright} deformations, thanks to directional, frictional interactions with a textured solid substrate, mediated by flexible inclined feet. We also present a simple reduced model that captures the essential features of the kinematics and energetics of the gait, and compare its predictions with the results from experiments and from numerical simulations.

}, keywords = {breathing-like deformations, crawling motility, directional interactions, directional surfaces, scallop theorem}, doi = {10.1098/rspa.2014.0333}, author = {Giovanni Noselli and Antonio DeSimone} } @article {31, title = {Reverse engineering the euglenoid movement}, journal = {Proceedings of the National Academy of Sciences of USA}, volume = {109}, year = {2012}, pages = {17874{\textendash}17879}, abstract = {

Euglenids exhibit an unconventional motility strategy amongst unicellular eukaryotes, consisting of large-amplitude highly concerted deformations of the entire body (euglenoid movement or metaboly). A plastic cell envelope called pellicle mediates these deformations. Unlike ciliary or flagellar motility, the biophysics of this mode is not well understood, including its efficiency and molecular machinery. We quantitatively examine video recordings of four euglenids executing such motions with statistical learning methods. This analysis reveals strokes of high uniformity in shape and pace. We then interpret the observations in the light of a theory for the pellicle kinematics, providing a precise understanding of the link between local actuation by pellicle shear and shape control. We systematically understand common observations, such as the helical conformations of the pellicle, and identify previously unnoticed features of metaboly. While two of our euglenids execute their stroke at constant body volume, the other two exhibit deviations of about 20\% from their average volume, challenging current models of low Reynolds number locomotion. We find that the active pellicle shear deformations causing shape changes can reach 340\%, and estimate the velocity of the molecular motors. Moreover, we find that metaboly accomplishes locomotion at hydrodynamic efficiencies comparable to those of ciliates and flagellates. Our results suggest new quantitative experiments, provide insight into the evolutionary history of euglenids, and suggest that the pellicle may serve as a model for engineered active surfaces with applications in microfluidics.

}, keywords = {active soft matter, microswimmers, self-propulsion, stroke kinematics}, doi = {10.1073/pnas.1213977109}, author = {Marino Arroyo and Luca Heltai and Daniel Mill{\'a}n and Antonio DeSimone} }